
MATHEMATICS OF COMPUTATION
Volume 66, Number 220, October 1997, Pages 1521-1553
S 0025-5718(97)00862-4

A UNIFIED APPROACH TO EVALUATION ALGORITHMS FOR
MULTIVARIATE POLYNOMIALS

SURESH K. LODHA AND RON GOLDMAN

ABSTRACT. We present a unified framework for most of the known and a
few new evaluation algorithms for multivariate polynomials expressed in a
wide variety of bases including the Bernstein-Bezier, multinomial (or Tay-
lor), Lagrange and Newton bases. This unification is achieved by considering
evaluation algorithms for multivariate polynomials expressed in terms of L-
bases, a class of bases that include the Bernstein-Bezier, multinomial, and
a rich subclass of Lagrange and Newton bases. All of the known evaluation
algorithms can be generated either by considering up recursive evaluation al-
gorithms for L-bases or by examining change of basis algorithms for L-bases.
For polynomials of degree n in s variables, the class of up recursive evaluation
algorithms includes a parallel up recurrence algorithm with computational
complexity Q(nS+l), a nested multiplication algorithm with computational
complexity Q(nS log n) and a ladder recurrence algorithm with computational
complexity Q(nS). These algorithms also generate a new generalization of the
Aitken-Neville algorithm for evaluation of multivariate polynomials expressed
in terms of Lagrange U-bases. The second class of algorithms, based on certain
change of basis algorithms between L-bases, include a nested multiplication al-
gorithm with computational complexity Q(nS), a divided difference algorithm,
a forward difference algorithm, and a Lagrange evaluation algorithm with com-
putational complexities Q(nS), Q(nS) and 0(n) per point respectively for the
evaluation of multivariate polynomials at several points.

1. INTRODUCTION

The Bernstein-Bezier, multinomial (or Taylor), Lagrange and Newton bases are
some of the most popular and useful representations for expressing polynomials
of degree n in s variables. Several algorithms for evaluating multivariate poly-
nomials, represented in these bases, have been proposed. The de Casteljau algo-
rithm with computational complexity Q(ns+l) is well-known for evaluating mul-
tivariate Bernstein-Bezier polynomials [13, 14]. Several algorithms for evaluating
multivariate polynomials in Bernstein-Bezier or multinomial (Taylor) form with
computational complexity Q(nS) have been described [5, 12, 42]. Generalizations

Received by the editor July 26, 1995 and, in revised form, July 22, 1996.
1991 Mathematics Subject Classification. Primary 65D17, 65Y20, 68Q25; Secondary 65Y25,

68U05, 68U07.
Key words and phrases. Algorithms, Bernstein, Bezier, change of basis, evaluation, Lagrange,

multivariate, Newton, polynomials, recurrence, Taylor.
The first author was supported in part by NSF Grants CCR-9309738, IRI-9423881 and by

faculty research funds granted by the University of California, Santa Cruz.
The second author was supported in part by NSF Grant CCR-9113239.

(1997 American Mathematical Society

1521

1522 SURESH K. LODHA AND RON GOLDMAN

with computational complexity 0(nS+l) of the Aitken-Neville algorithm for eval-
uating univariate Lagrange polynomials to certain subclasses of multivariate La-
grange polynomials have been proposed [6, 34, 44]. Evaluation algorithms with
computational complexity Q(nS) for multivariate polynomials expressed in New-
ton bases have also been described [19]. In addition, evaluation algorithms related
to the generalizations of forward and divided difference algorithms to multivariate
polynomials have also been discussed [45, 11, 46, 25, 41].

Most of these evaluation algorithms seem to have been discovered independently
from one another and, therefore, the literature as cited above is scattered and the
various algorithms appear to be unrelated. One of the major goals of this work is to
demonstrate that these seemingly disparate algorithms are, in fact, closely related.
Indeed, all of these algorithms can be derived from the evaluation algorithms for
multivariate L-bases, a class of bases that include the Bernstein-Bezier, multino-
mial, and certain proper subclasses of Lagrange and Newton bases. This unification
of these algorithms provides a deeper, cleaner and much richer understanding of
a large class of algorithms for evaluating multivariate polynomials. This under-
standing, in turn, has helped us to design a few new, more efficient algorithms, for
evaluating multivariate polynomials.

Our work easily generalizes to arbitrary dimensions. However, for the sake of
simplicity, the results are presented and derived here only for bivariate polynomials.

We begin by describing a general parallel up recurrence algorithm with com-
putational complexity 0(n3) for the evaluation of bivariate L-bases. This algo-
rithm specializes to the standard de Casteljau algorithm for evaluation of bivariate
Bernstein-Bezier surfaces [13, 14]. The up recurrence also specializes to 0(n2) algo-
rithms for the evaluation of multinomial (Taylor) bases, that include the algorithms
proposed earlier by Carnicer-Gasca [5] and de Boor-Ron [12]. In addition, the up
recurrence specializes to an algorithm for evaluating Newton polynomials, that
has been previously discussed by Carnicer and Gasca [5, 19]. The up recurrence
also yields a new generalization of the Aitken-Neville algorithm with computational
complexity 0(n3) for the evaluation of bivariate Lagrange L-bases. By removing re-
dundant computations, we show that the general parallel up recurrence algorithm
can be improved to a new recurrence algorithm with computational complexity
0(n2 log n) for the evaluation of arbitrary L-bases. Furthermore, the up recurrence
algorithm can be altered into a ladder recurrence algorithm with computational
complexity 0(n2) by changing the structure of the parallel up recurrence diagram
for the evaluation of bivariate L-bases.

Next we describe another class of algorithms for evaluating L-bases, based on
certain change of basis algorithms between L-bases. This class of algorithms include
a divided difference algorithm with computational complexity 0(n2) per point, a
forward difference algorithm with 0(n2) additions and 0(1) multiplications per
point, and a new Lagrange evaluation algorithm with amortized computational
complexity 0(n) per point. The change of basis algorithm can be specialized into
a nested multiplication algorithm with computational complexity 0(n2) for the
evaluation of bivariate L-bases. This class of algorithms includes an algorithm for
evaluating multivariate polynomials in multinomial (Taylor) form described earlier
by Schumaker and Volk [42].

This paper is organized in the following manner. Section 2 reviews the definition
of L-bases and presents examples of Bernstein-Bezier, multinomial, Lagrange and

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1523

Newton bases as L-bases. Section 3 describes up recurrence algorithms - a paral-
lel up recurrence algorithm with computational complexity 0(n3), a nested mul-
tiplication evaluation algorithm with computational complexity Q(n2 log n), and
a ladder recurrence algorithm with computational complexity 0(n2). Section 4
presents down recursive evaluation algorithms - a Lagrange evaluation algorithm
with computational complexity 0(n) per point, a divided difference algorithm with
computational complexity 0(n2) per point, a forward difference algorithm with
computational complexity 0(n2) per point, and a nested multiplication evaluation
algorithm with computational complexity 0(n2). The difference between the nested
multiplication evaluation algorithm presented in Section 3.2 and the nested multi-
plication evaluation algorithm presented in Section 4.4 is highlighted by presenting
an example of the evaluation of a bivariate Lagrange L-basis. Section 5 presents
a brief description of other evaluation algorithms including hybrid algorithms and
derivative evaluation algorithms, that can be obtained by combining or extending
some of the above algorithms. Finally, Section 6 concludes with some discussion of
future work.

2. L-BASES

Here we review the basic definitions and certain well-known examples of L-bases.
We also provide very brief geometric interpretations for the algebraic entities as-
sociated with the L-bases in order to explain how certain bivariate Lagrange and
Newton bases arise as special cases of L-bases. Complete details are provided in
[27].

Throughout this paper, we shall adopt the following notation. A multi-index a is
a 3-tuple of non-negative integers. If a = (ai, a2, a3), then IaI = a 1 + a2 + a3 and
a! = a1 !a2 !a3!. Other multi-indices will be denoted by i3 and Ay. A unit multi-index
ek is a 3-tuple with 1 in the k-th position and 0 everywhere else. Scalar indices will
be denoted by i, j, k, 1.

A collection L of 3 sequences {L1,3}, {L2,J}, {L3,J}, j = 1 ,n, of linear
polynomials in two variables is called a knot-net of polynomials if (Lia1?i, L2,a2+1,
L3 ,,+l) are linearly independent polynomials for 0 < lal < n - 1. An L-basis
{ln>, laI = n} is a collection of (nj+2) bivariate polynomials defined as follows:

a 1 CQ2 C3

(2.1) = flLi flL2j fI L3k.
i=1 j=1 k=1

It is well-known that {ln, tal = n} is, in fact, a basis for the space of polynomials
of degree n on R2 [7].

We assign to each linear polynomial ax + by + c the corresponding line in the
affine plane defined by the equation ax + by + c = 0. (The polynomial c corresponds
to the line at infinity in the projective plane.) For full details, please refer to [27].
Observe that this correspondence between lines and linear polynomials depends on
the coordinate system and is unique only up to constant multiples. Nevertheless, in
the following discussions, we shall identify the linear polynomial with the line and
vice-versa, whenever the coordinate system and constant multiples are irrelevant
for the context at hand. The advantage of this correspondence is to allow us to
think of algebraic entities such as linear polynomials in terms of geometric entities
such as lines.

1524 SURESH K. LODHA AND RON GOLDMAN

2.1. Bernstein-Bezier Bases. We can easily realize Bernstein-Bezier bases as
special cases of L-bases by choosing the knot-net of polynomials Lij = Li, 1 ?< j <
n, L1 = alx+bly+cl, L2 = a2x+b2y+c2, L3 = a3x+b3y+c3, where L1, L2 and
L3 are linearly independent polynomials such that no two of the associated lines are
parallel. It can easily be verified that the corresponding L-basis is, up to constant
multiples, the Bernstein-Bezier basis defined by the three intersection points of L1,
L2 and L3. In particular, L1 = x, L2 = y and L3 = 1 - x - y, yields the standard
Bernstein-Bezier basis, up to constant multiples, that is, ln = xal y2 (1 - x - y)L>3.

For a detailed discussion of Bernstein-Bezier bases and their properties, we refer
the reader to [15].

2.2. Multinomial Bases. The multinomial basis is the standard generalization of
the monomial basis to the multivariate setting. For example, the basis 1, x, y, x9,
xy and y2 is the bivariate multinomial basis of degree 2. Sometimes the terminology
Taylor basis or power basis is also used instead of monomial or multinomial basis.
However, we shall refer to this basis as the multinomial basis in accordance with
[23] and reserve the term power basis for the basis each element of which is an n-th
power of some linear polynomial [23].

The standard multinomial basis is realized as a special case of an L-basis by
choosing the knot-net of polynomials Lij = Li, 1 < j < n, L1 = x, L2 = y and
L3 = 1. This yields: ln = X'>1yC22. More general multinomial bases can also be
realized as L-bases [27].

2.3. Lagrange Bases. Let { {Lij}, {L2j}, {L3j}, j = 1, ,n } be a knot-net of
polynomials. Suppose that the polynomials (L1,a,+1,L2,a2+1,L3,C33+1) are linearly
dependent for Jal = n, 0 < ak < n - 1. It has been established in [27] that,
up to constant multiples, the corresponding L-basis is a Lagrange basis; that is,
there exist points v. such that l'(vo) = ln(vQ)6,. Therefore, {n} forms a
Lagrange basis.

To describe the points v., let us analyze the dependency conditions. Overloading
the notation, let Lij also denote the line in the plane defined by the equation:
Lij = 0. The linear dependency condition on the polynomials Li,,i+l means that
the three lines (Li, + 1,L2,12+1 ,L3, ,3?+) are concurrent for I aI = n, 0 < cak < n-1,
that is, these three lines pass through a common point. In general, these lines
then meet at a point, in the affine plane if the lines intersect or at infinity in the
projective plane if the lines are parallel. Let v, = F3)1 Lk,,k?1 for lol = n,
0< ak < n-1. These intersections give rise to (fl+2)-3 points corresponding to
(n2+2) -3 dependency conditions. To these points, we shall add three more points:
Vn00= L31 0L21, v0n0 = L1i nL31, and v00n = L1i n L21. These are precisely the
(nj+2) points that give rise to Lagrange interpolation conditions.

In our earlier work, we described several interesting lattice or point-line con-
figurations that generate Lagrange L-bases [27]. Here we simply describe one in-
teresting lattice, known as a principal lattice or geometric mesh [8], that admits
unique interpolation by a Lagrange L-basis. Figure 1 is an example of a prin-
cipal lattice or geometric mesh [8] of order n, which can be described by three
sets of n lines {{L1i}, {L2j}, {L3k}, 1 < i,j,k < n} such that each set of three
lines {L1,i+1, L2,J+1, L3,k+1, i + j + k = n} intersect at exactly one common point
Vijk. The lines in Figure 1 satisfy both the linear independence condition for

(L1,,1+1, L2,012+1, L3,a3+1), 0 < Ice < n - 1, which is required to define a knot-net

EVALUAI'ION ALGORITHMS FOR MULTI'IVARIA'I'E POLYNOMIALS 1525

L31

L V030
32

L3 V021 L23

V003 10

/
02/

L
fl fl fl~~ 21

11 L12 L13

FIGURE 1. Geometric mesh of order 3 for Lagrange L-basis

of polynomials and the linear dependence condition that is required to define a
Lagrange basis. It is clear from the above construction that every geometric mesh
of order n gives rise to a Lagrange L-basis.

2.4. Newton Bases. By choosing the polynomials Lli = x - aj, L2i = y - bi and
L3i= 1, we obtain the following Newton basis:

In = x I(- ai)]I| (y-bj)
i=1 j=1

For example, when n = 2 this construction yields the basis functions: 1, (x - a,),
(x - al)(x - a2), (y - b1), (y - bi) (y - b2) and (x - a) (y - b1). A slightly more
general Newton L-basis is obtained by simply choosing the polynomials Lli =
alix + bliy + cli, L2i = a2ix + b2iy + C2i, and L3i = a3x + b3y + C3. In our earlier
work [27], we established that each Newton L-basis can be associated with a point
and derivative interpolation problem with the following properties: (i) there exists a
unique solution to the general interpolation problem expressed in this basis and (ii)
the coefficients a,, of the interpolant L(u) = Zicl=n actls expressed in the Newton
L-basis are the solutions of a lower triangular system of linear equations.

In [27], we also exhibited a rich collection of lattices or point-line configurations
that admit unique and natural solutions to an appropriate interpolation problem by
means of a Newton L-basis. These lattices include the principal lattices or geometric
meshes (and the associated Lagrange interpolation problems) as well as natural
lattices of order n, which are defined by n + 2 distinct lines. The corresponding
Newton L-bases solve the Lagrange interpolation problem at the associated (n+2)

distinct points of intersection. Figure 2 shows a natural lattice of order 3. [27] also
presents some examples of lattices usually associated with Hermite interpolation
problems [31, 37] that can be solved uniquely with Newton L-bases.

1526 SURESH K. LODHA AND RON GOLDMAN

FIGURE 2. Natural lattice of order 3 for Newton L-basis

3. UP RECURRENCE EVALUATION ALGORITHMS

This section describes a class of evaluation algorithms for L-bases that arise from
variations on a general parallel up recurrence algorithm, which is discussed next.

3.1. Parallel Up Recurrence Algorithm. We first describe the parallel up re-
currence algorithm and then establish its correctness. Let L(u) be a polynomial
expressed in terms of an L-basis {11} defined by the knot-net L1 = {{L1j}, {L2j},
JL3j} j = 1,***, n}. Suppose we wish to evaluate L(u) = Zjkjn Salj(u) at an
arbitrary but fixed u. The parallel up recurrence algorithm uses the up recurrence
illustrated in Figure 3 to evaluate L(u), where the coefficients C0 are normalized as
C02 = Sc>. The diagram is to be interpreted as follows: the computation starts at

n!~~~~~~~~~~~~~~~~~~~~~~T

CO
003

IL

0~02
L2 Vt

102 3e C0012

31~~ ~~L L
0

L 032 .~2~

Vim ' -:-t -t <<- 1 'I* 2
1 K21 *S 00..,

200 . 01r Y 2

0 CO CO Cc C300 210 120 030

FIGURE 3. Parallel up recurrence algorithm for L-bases

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1527

the base of the tetrahedron. The value at any node is computed by multiplying the
value along each arrow which enters the node by the value of the node from which
the arrow emerges and adding the results. Observe that the central node of the
base of the tetrahedron is occluded by the apex node in Figure 3 and is therefore
not shown. The value of L(u) is then given by C()()(at the apex of the tetrahedron.
More formally the recurrence is described as follows:

CO) _ o! S.e cc n !
3

cc, = Cal4 * Lka, for i = 1,*** ,n, for al = n-i.
k=1

This algorithm generalizes the parallel up recurrence algorithm for the evaluation
of univariate polynomials expressed in terms of Polya basis functions [23]. The
computational complexity of this algorithm is 0(n3), because there are rn(+?1)(+?2) 6
nodes in the tetrahedron.

We now establish the correctness of the parallel up recurrence algorithm. A
careful examination of the algorithm or the recurrence equation above reveals that
the label along the edge from the node a + ej to the node a is Li c,1+1. This
property was referred to as the parallel property in the univariate case in [23]. Due
to this property of the recurrence diagram, the labels along the "parallel" edges of
the tetrahedron are the same. For example, the labels along the edges from C2)()
to Cr), from Cl1() to Ci), and from Co12() to C(12() in Figure 3 are the same. By
the parallel property the products of the labels along each path from a node a at
the base to the node at the apex are identical. These products are all equal to I"
because to pass from the multi-index a to the multi-index (0, 0, 0) each entry ai
must be reduced to 0; thus each of the factors Li k, i = 1, 2, 3, 0 < k < aj, must be
encountered exactly once along each path. Now observe that there are exactly a

paths from the node a at the base of the tetrahedron to the node at the apex of
the tetrahedron. Therefore, a coefficient Cc(at the base is multiplied by the same
value I" along any of these a paths. Hence the total contribution to the apex is

I C()i". This observation establishes the correctness of the algorithm.

3.2. Nested Multiplication Algorithm. The nested multiplication evaluation
algorithm for L-bases arises by observing that if we do not scale the coefficients in
the parallel up recurrence algorithm described in Section 3.1, the same computa-
tion can be accomplished by choosing exactly one path from each node at the base
of the tetrahedron to the node at the apex. This structure can easily be achieved
by making sure that at every level of the computation there is exactly one arrow
pointing upwards from each node. It is remarkable that it does not matter which
set of arrows are used at each level so long as they satisfy this uniqueness condition.
Therefore, this observation gives rise to a whole class of algorithms, all of which
have many fewer arrows than the general up recurrence algorithm described in the
previous section. A simple symmetric rule for selecting the arrows is to choose all
the arrows in the topmost upright triangles, the two lower arrows on the rightmost
triangles and the leftmost arrow in all the remaining triangles as shown in Figure
4. However, although the number of arrows is reduced with this choice, the compu-
tational complexity of the algorithm still remains 0(n3) because we have removed
slightly less than 2 of the arrows. 3

1528 SURESH K. LODHA AND RON GOLDMAN

S0
so03

L

L21

0~~~~~ 0 S~~~~~~~~~~
102 012

2 L~~~~~~2
0 1 ~ ~ 010 1

L L >1<

1 2 L32~1 S1 2

SO SO So s
300 210 1 20 S 030

FIGURE 4. Nested multiplication evaluation algorithm for L-bases

Carnicer and Gasca [5] describe a class of evaluation algorithms for those mul-
tivariate polynomials that are expressed as the sum of a constant plus some other
polynomials, each of which can be written as a product of a linear polynomial with
a polynomial of degree strictly lower than the degree of the original polynomial.
Polynomials represented in terms of L-bases clearly satisfy this property. There-
fore, the evaluation algorithms of Carnicer and Gasca can be applied to L-bases.
However their algorithm and the resulting computational complexity depend upon
the way the polynomial is represented. In general, the computational complexity of
their algorithm for bivariate polynomial bases including bivariate Lagrange bases
[6] is 0(n3). We shall refer to this class of algorithms, including up recurrence algo-
rithms and algorithms described by Carnicer and Gasca, as nested multiplication
algorithms because these algorithms can clearly be viewed as nested multiplication.
Both Carnicer and Gasca [5] and de Boor and Ron [12] describe this class of nested
multiplication algorithms as the generalization of Homner's nested multiplication al-
gorithm for the evaluation of univariate polynomials. However, as we shall see later
in Section 4, there is another different class of nested multiplication algorithms for
the evaluation of multivariate polynomials that also qualify as generalizations of
Homner's algorithm. Therefore, it is not clear which of these algorithms can claim
to be the generalization of Homner's evaluation algorithm, although all of them are
a form of nested multiplication.

We can reduce the computational complexity of the our nested multiplication
algorithm from 0(n3) to 0(ri2 log n) by observing that it is not necessary to have an
arrow emerging from a node if there are no arrows entering that node. Such a node
will be referred to as a dead node. Other nodes will be referred to as active nodes.
To reduce the computational complexity of the algorithm, we desire to increase the

EVALUATION ALGORITHMS FOR MUUFIVARIATE POLYNOMIALS 1529

s003

S102 S01

,1 -~~~~~ ~~201 -
2

0 0 0

0 0 0 0
S30 S2 S120 S030

FIGURE 5. Nested multiplication evaluation algorithm for L-bases

number of dead nodes as much as possible. One way to achieve this end is to point
as many arrows as possible towards the corners and towards the sides rather than
towards the center.

We now briefly illustrate how this idea can be used to reduce the computational
complexity of the analogous evaluation algorithm for univariate polynomials from
0(n2) to O(n log n). This problem is purely combinatorial; one simply needs to
choose enough arrows so that there is exactly one path from every node at the
base to the node at the apex. The left diagram of Figure 5 shows how this can be
achieved for univariate polynomials when n = 3. This approach can be generalized
to polynomials of arbitrary degree n by a divide and conquer strategy. Here a
problem of size n is broken down into two subproblems of size J at the base
followed by at most arrows on both sides of the triangle. An example for
n = 7 is shown in Figure 6, where evaluation of a univariate polynomial of degree
7 is broken down into two subproblems of evaluation for univariate polynomials of
degree 3 at the base. This approach yields the following recurrence equation for
the computational complexity T(n):

T(n) = 2T([j) + 0(n).
2

Solving this recurrence, we obtain T(n) = n log n, which establishes the claim for
univariate polynomials.

To generalize this technique to the bivariate case, we run the univariate algorithm
layer by layer as illustrated in the right diagram of Figure 5. For the nodes in the
frontmost layer of the base of the tetrahedron, we run an evaluation algorithm for a
univariate L-basis of degree n. For the layer behind it at the base of the tetrahedron,
we run the evaluation algorithm for a univariate L-basis of degree n - 1 and so on.
Thus we run evaluation algorithms for univariate L-bases of degrees all the way
from n down to 1. This approach yields values at all the nodes along one of the
edges of the tetrahedron, namely the back edge. We now simply put arrows along
this back edge to compute the value at the apex of the tetrahedron. These new
arrows require an additional 0(n) computations. This method yields the following

1530 SURESH K. LODHA AND RON GOLDMAN

/0

/0 0 /~~00

0 0

0 0 0 0 0 0 0 0

FIGURE 6. Nested multiplication evaluation algorithm for univari-
ate L-bases of degree 7

equation for the computational complexity T(n):
Tt

T(n) = A 0 (k log k) + 0 (n).
k=1

Therefore, the total computational complexity of this algorithm is 0(n2 log n).
Although this algorithm seems to give the best possible computational complexity
that one can obtain by removing arrows from a parallel up recurrence algorithm, it
does not give the best possible constant because one can easily figure out other ways
of removing arrows which actually yield fewer arrows than the algorithm described
above. However we found that this description was the easiest way to provide a
simple proof that by removing arrows one can obtain an evaluation algorithm with
computational complexity 0(n2 log n).

3.3. Examples. This section describes how the parallel up recurrence algorithm
and the nested multiplication algorithm for evaluation of bivariate L-bases can be
specialized to obtain evaluation algorithms for bivariate Bernstein-Bezier bases,
multinomial bases, Lagrange L-bases and Newton L-bases.

3.3.1. Multinomial Evaluation. Since one of the knot-nets in the multinomial basis
is always 1, considerable simplifications take place in both the parallel up recur-
rence algorithm and the nested multiplication algorithm for evaluation with respect
to the multinomial bases. In this case it pays to choose arrows with the label 1
as often as possible. The left diagram of Figure 7 shows such a choice, where the
arrows pointing downward have the label 1. Since no multiplication needs to be
done for arrows with the label 1, one can "pull up" these nodes as shown in the
right diagram of Figure 7. The value at any node is now computed by adding the
value at that node to the value computed as before by multiplying the label along
each. arrow which enters the node by the value of the node from which the arrow
emerges and adding the results. The right diagram of Figure 7 shows the same
computation as in the left diagram, but now arranged in a triangular format. Since
the triangular format has only n2 nodes, this figure shows that the computational

EVALUATION ALGORITHMS FOR MULIIVARIATE POLYNOMIALS 1531

S003

S300 S2102 SIi 0 S030 S212 S003

vi yl~~~~~~~~~~~~

R102 ~ ~ ~ ~~S0 / \

102 0 012

~201 0- I01

R .. 02 //\

I201 y12010 0 0 1021

V/ \Y /\/ / /

0 0 0 0
S21 120 030 2 300 210 120 030

FIGURE 7. Efficient evaluation algorithm for multinomial bases

R102 0

201Q R 1110 0R2

/\ Y /"'\Y / *\Y
0 0 0 0

FIGURE 8. de Boor-Ron's evaluation algorithm for multinomial bases

complexity of this evaluation algorithm is 0(n2). Although Carnicer and Gasca
[5] do not explicitly discuss the evaluation of multivariate polynomials expressed in
the multinomial bases, the right diagram of Figure 7 is very similar to the diagram
in [6], which appears in an analogous but slightly different context. Therefore, this
evaluation algorithm can be construed to be equivalent to the one proposed by
Carnicer and Gasca [5, 6].

Interestingly, de Boor and Ron [12] describe an evaluation algorithm for multi-
nomial bases that is closely related to these algorithms, although not quite the
same. In fact, their algorithm is a hybrid of the parallel up recurrence and the
efficient parallel up recurrence algorithm, where some duplicate paths have not
been removed. They take advantage of the arrows with label 1 and "pull up" the
nodes, but they do not remove redundant paths. Therefore, their starting coeffi-
cients are slightly different from both C, and S,. In fact, their starting coefficients
are R, (-''21)! S,. The diagram of Figure 8 shows the evaluation recurrence of

1532 SURESH K. LODHA AND RON GOLDMAN

L1/~\L21 <

0 01
0 0 0 L

L1 21\22 Li \21 32
1 X2

1 111 11 '"1

L \21,1\2 \L23 L/2 /\2 1 L

0 0 0 0 0 0 0 0 0 0
R300 R 210 RR120 R030 R201 R11l R021 R102 R 012 Ro03

FIGURE 9. Evaluation algorithm for L-bases with coefficients Ra

de Boor and Ron for the evaluation of multinomial bases. This algorithm also has
computational complexity of 0(n2), although with a larger constant.

In fact, following this strategy of using the coefficients Ra instead of the coef-
ficients C, or Sa, one can write down yet another form of nested multiplication
algorithm for the evaluation of multivariate polynomials expressed in terms of L-
bases. This algorithm is illustrated in Figure 9. Observe that the tetrahedral
structure of the parallel up recurrence diagram in Figure 3 can be shown conve-
niently as in Figure 9, where the different layers (a layer being defined as nodes
a with same a3 value) of the tetrahedral structure are shown side-by-side. Since
there is exactly one edge between different layers of this diagram, there are no
"cross-edges" as there are in Figure 3. Therefore, the side-by-side diagram appears
uncluttered. The algorithm in Figure 9 utilizes R, as coefficients because some
of the duplicate paths have not been removed. This algorithm has computational
complexity Zk1 0(k2) = 0(n3). By removing all the duplicate paths and using
the coefficients Sa, one can redraw the right diagram of Figure 5 as Figure 10. This
algorithm has computational complexity k=1 0(k log k) = 0(n2 log n).

3.3.2. Bernstein-Be'zier Evaluation. The parallel up recurrence algorithm special-
izes to the de Casteljau evaluation algorithm for Bernstein-Bezier surfaces with
computational complexity 0(n3) [13, 14]. In this case, observe that C) := c! Sa are
indeed the coefficients of the multivariate polynomials in Bernstein-Bezier form.

There is another interesting way of evaluating polynomials of total degree n ex-
pressed in terms of Bernstein-Bezier bases by viewing the polynomial as a tensor
product of bi-degree n x n [47]. This tensor product evaluation algorithm for the
standard Bernstein-Bezier basis can be derived by reorganizing the computation as

1/\/21
<

O O O L
L/ \22 L\l 21 32

0 0 0 0 0 0

Ll/ \121 Li/ \ 23 L1/ Li/ \L~22 Li / \L21
L3

0 0 0 0 0 0 0 0 0 0

S300 S210 S120 S030 S201 S.,, S021 S102 S012 S003

FIGURE 10. Another diagram for the evaluation algorithm for L-
bases with coefficients S,

EVALUATION ALGORITHMS FOR MULIIVARIATE POLYNOMIALS 1533

follows:

L (u) =
n

C<>X11 y122 (1 - X -y)C23 L~~u) = c =n

(+y!aC a2(1 -) I y) -+ 2(X- -y)13

v n! (a1i + a2)! x -1 y
k 2

k-O a3!(al + a2)! al!a2! a + y x + y

(X + y)(}1 +C12 X
-zy)C'3

= E ~~nl (E: (Cej+ C2)!C (-~s2

1 C-c 1 t

where s = and t = (1-x- y).
The inner sum in the above computation can be evaluated using the univariate

de Casteljau evaluation algorithm for degrees 0 to n. These univariate de Casteljau
algorithms for degree 3 are shown in the bottom part of Figure 11 where the pa-
rameter s appears. The outer sum in the above computation is another univariate
de Casteljau evaluation algorithm for degree n. This evaluation algorithm is shown
in the top part of Figure 11 where the parameter t appears.

This tensor product algorithm has n(n+l)(n+5) arrows for the evaluation of poly- 3
nomials of degree n. Therefore this algorithm is still 0(n3). However observe that
the standard bivariate de Casteljau algorithm for the evaluation of polynomials of
total degree n has n(n)(2) arrows, as shown in Figure 3. Therefore the tensor

2~~~~~
0

0

/ o

0

~~As 1~~~~~~SAS ~~~~003
0 ~~~0 0

0oo o102 012

/
\

/1-Ss /-S\ C201 C il C021

0 0 0 0

C300 C210 C120 C030

FIGURE 11. Tensor product evaluation algorithm for Bernstein-
Bezier polynomials

1534 SURESH K. LODHA AND RON GOLDMAN

product algorithm is more efficient than the standard bivariate de Casteljau algo-
rithm for the evaluation of polynomials of total degree greater than or equal to
4.

3.3.3. Newton Evaluation. Since all the polynomials in one of the sequences in
the knot-net of a Newton basis are 1, considerable simplifications take place as
well in both the parallel up recurrence algorithm and the nested multiplication
algorithm for the evaluation of Newton bases. In this case too it pays to choose
arrows with labels 1 as often as possible. The left diagram of Figure 12 shows
such a choice, where the arrows pointing downwards have the label 1. Since no
multiplication needs to be done for arrows with labels 1, one can "pull up" these
nodes as shown in the right diagram of Figure 12. The right diagram of Figure
12 shows the same computation as in the left diagram, but now arranged in a
triangular format. Since the triangular format has only 0(n2) nodes, this figure
shows that the computational complexity of this evaluation algorithm is 0(n2).

This algorithm is exactly the same as the evaluation algorithm described by Gasca
in [19].

3.3.4. Lagrange Evaluation: Generalization of the Aitken-Neville Algorithm. We
now derive a variation of the parallel up recurrence diagram for the evaluation of
Lagrange L-bases, which gives rise to a bivariate generalization of the univariate
Aitken-Neville algorithm. In the past the Aitken-Neville algorithm has been gen-
eralized to some restricted classes of bivariate Lagrange polynomials [1, 36, 19, 6,
5, 34, 20, 22, 33, 44, 351. This new generalization extends the class of multivariate
Lagrange polynomials to which an Aitken-Neville algorithm can be applied.

Given a knot-net L = {{Lij}, {L2j}, {L3-}, j = 1,** ,n} of linear polynomi-
als, consider the three knot-nets M 1 = {(L11, I Lin), (L2 i,... , L2n), (L31,
*-- X L3n)}, A42 = {(Li,, .. , Lln), (L21, ... , L2n), (L31, * , L3n)}, and A43
{(L1i, -.. , L1n), (L21, ... , L2n), (L31, ... , L3n)} respectively, where L means
that the term L is missing. Observe that if 2 satisfies the linear independence
condition on the knot-net of polynomials for 0 < a < n - 1, then the knot-
net M1 satisfies the linear independence condition for 0 < 1/1 < n - 2. This

,~~~~~~~~~~~~ 0 L 0\
1

0 ~ 12 L 22

yIGURE 02. valatin alorihm or Nwto L-ase
12 1 2 L L1 Li L2

2 00'* 1 1 0 0 0 0

FIGURE 12. Evaluation algorithm for Newton L-bases

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1535

observation follows by setting a1 = /1 + 1, a2 = /2 and a3 = /3. Similarly the
knot-nets M2 and M3 satisfy the linear independence condition for 0 < 101 <
n- 2. Moreover, if the knot-net L satisfies the linear dependence condition for a
Lagrange L-basis, then the three knot-nets M1, M2 and M3 also satisfy the linear
dependence condition for a Lagrange L-basis. Let {ln}, {pl1}, {ppn-l} and {p~n,1 }
be the L-bases corresponding to the knot-nets L, M1, M2 and M3 respectively.

We can associate point interpolation problems to these knot-nets as follows. Let
L(u) be the unique polynomial of degree n that interpolates the values S.> at the
points v,, where the points v. are the points of intersection of certain lines from the
collection L as described in Section 2.3. Then, L(u) = E>1a=n SO ln(v,). Similarly
let M1 (u), M2 (u) and M3 (u) be the unique polynomials of degree n - 1 that satisfy
the point interpolation conditions Mi = Sci+e,,cx for jal = n - 1. Then Mj(u) =

n-1

Z10oj=n-1 Sc, +ei pni(cxl~~~~i a 1tc (V"),
Now create the following variation of the parallel up recurrence algorithm: Re-

place the labels Lk,,k by the labels L k, a on the arrows pointing from the
Lk,ak (Vnf+Iek)

node CQ to the node C1+jek. Then we can express the solution to the point interpo-
lation problem as a linear combination of the solutions to the three subproblems of
point interpolation and thus generalize the Aitken-Neville algorithm for the evalu-
ation of Lagrange polynomials from univariate to bivariate polynomials [1, 36].

Theorem 3.1.

L(u)= L, Mi(u) + L21 M2(u) + L31 Mv (u).
1L1 (Vn0O) L21 (VOnO) L31 (VOOn)

Proof. The proof is by induction. The case n = 1 reduces to a simple triangular
point interpolation problem and in this case the linear solution L(u) is indeed a
barycentric combination of constant solutions given by

= LI_ Coo + L21
0Coo + Coo LL L (v1oo) L21 (vo1o) L31 (VO01)

The inductive hypothesis assumes that the statement of the theorem is true for
n - 1. We will now prove that the statement of the theorem holds for n. First,
observe that for i = 1, 2, 3

72-1

(3.1) MA(u) = So+ei l

jal=n-1
PiaN,

The inductive hypothesis asserts that the values at the three nodes that contribute
to the apex of the tetrahedron, which are simply the apexes of the recurrence
diagrams of the three sub-problems, are M1 (u), M2(u) and M3(u). Now let

(3.2) M(u) = L, M (u) + L21 M2(u) + L31 M3 (u) Ljl (Vn0O) L21 (V~n0) L31 (V00n)

We will prove that M(u) = L(u). Substituting Equation 3.1 into Equation 3.2 and
recalling also that

Li 1n-l In

we obtain
In

M (u) = S a I(v)
IjiI=n eN,

1536 SURESH K. LODHA AND RON GOLDMAN

where

1(v) LiL (V) + L21 (V) + L31 (v)
Ljj1(Vn00) L21 (V~nO) L31 (VO0n)

To show that I = 1, we observe that I is a linear polynomial, which evaluates to
1 at three affinely independent (that is, non-collinear) points vn0 , vOno and voon;

therefore I is identically equal to 1. This proves that M(u) = L(u) and establishes
the theorem. EL

3.4. Ladder Recurrence Algorithm. By removing redundant arrows, we were
able to design an Q(n2 log n) algorithm for the evaluation of bivariate L-bases in
Section 3.2. Can we do better? The answer is yes, although we must modify still
further the structure of the up recurrence algorithm. In Section 3.2, we derived an
0(n2 log n) algorithm by extending a univariate evaluation algorithm with compu-
tational complexity O(n log n). By modifying the structure of the univariate parallel
up recurrence, Warren developed a ladder recurrence algorithm for the evaluation
of univariate L-bases (or P6lya bases) with computational complexity 0(n) [48].
This univariate technique can be extended to bivariate L-bases and yields a ladder
recurrence algorithm for the evaluation of bivariate L-bases with computational
complexity 0(n2) [28].

We first describe the ladder recurrence algorithm and then sketch a proof of
its correctness. This ladder recurrence algorithm is obtained by replacing each
triangle of height p in Figure 10 by a "ladder" of height p that yields the same
result. Figure 13 presents an example of the bivariate ladder recurrence algorithm
for degree 3. The recurrence starts at the bottom of Figure 13, at all the nodes
shown as cross-hatched circles. These nodes have values 1. As before, the value
at any node is computed by multiplying the value along each arrow that enters
the node by the value of the node from which the arrow emerges and adding the
results. The computation proceeds upwards and the value of L(u) emerges at the
apex node of the triangle, shown as a black circle in Figure 13. Since a ladder with
p steps requires 0(p) computations, the computational complexity of this algorithm
is EP= 0(p) = 0(n2). Observe that in contrast to other algorithms described in
this work, this algorithm employs coefficients as labels along the edges.

L L31 11 ,i

L S o S L

S \ IS S \ L 13 0 l 0 L L23 LL ?21 ? 0 L33

S <~~~~~~1
GO 2rO O 22 ? t 22 0 ?1R ? S00

00'02L1 520\ / 1; @ L21 03
FGR 1.adreuecagrh frbvitLb 1 ase

FiGURE 13. Ladder recurrence algorithm for bivariate L-bases

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1537

To establish the correctness of the ladder recurrence algorithm, observe that this
algorithm reorganizes the computation as follows:

L(u) = E SalI
lcaI=n
n

-
EL31 ... L3k E Sal)a2)kLjj * Lla, L21 * L2a2

k=O u1+Ca2=n-k

n

= L31-..L3kPk,

k=O

where Pk = Ecai1ca2=n-k Sca1)ca2,kL1j * L l L21. L2c>2. The multiplications by
L3,.'s are shown along the diagonal in Figure 13. The computation of Pk can be
arranged as a ladder of size n - k where L1,. 's appear on the left side of the ladder
and L2,. 's appear on the right side of the ladder indexed in reverse order. The S, 's
appear along the rungs of the ladder. This situation is illustrated in Figure 13 for
the evaluation of bivariate L-bases of degree 3. The coefficient Sck1 ,12,k is placed on
the rung a1 steps below the top and a2 steps above the bottom of the kth ladder.
Thus in the ladder computation Sck 1c>2,k gets multiplied by the factor L11 ...Ll
along the left edge of the ladder and by the factor L21 ... L2,>2 along the right edge
of the ladder, yielding the desired result for Pk. A more formal description of this
algorithm as well as a more rigorous proof of the correctness of the algorithm using
induction can be found in [28].

4. DOWN RECURRENCE EVALUATION ALGORITHMS

So far we have established that a large class of evaluation algorithms for mul-
tivariate polynomials expressed in terms of L-bases can be obtained as variations
of parallel up recurrence algorithms. In this section, we want to establish that an-
other large class of evaluation algorithms can be obtained as variations of certain
change of basis algorithms for L-bases. In Section 4.5, we establish that a divided
difference algorithm and a forward difference algorithm both with computational
complexity 0(n2) for evaluation of bivariate polynomials can be viewed as change
of basis algorithms from a Newton L-basis to another Newton L-basis. In Section
4.4, we obtain a nested multiplication evaluation algorithm with computational
complexity 0(n2) by specializing the change of basis algorithm between L-bases.
This nested multiplication evaluation algorithm is different than the one presented
in Section 3.2 which, in general, has computational complexity Q(n2 log n). More
interestingly, we also present in Section 4.3 a Lagrange evaluation algorithm for
evaluating bivariate polynomials of degree n with amortized computational com-
plexity 0(n) per point that can be obtained as a change of basis algorithm from an
arbitrary L-basis to a Lagrange L-basis. Thus this class of evaluation algorithms are
tied together conceptually and are different than the class of evaluation algorithms
based on up recurrence algorithms discussed in Section 3.

Now, a note on terminology. We could refer to this class of evaluation algorithms
as "change-of-basis" evaluation algorithms because, as stated above, they are all
derived by considering certain change of basis algorithms between L-bases. How-
ever, we have decided to refer to these algorithms as down recurrence evaluation
algorithms for two reasons: (i) First, we shall soon see that in the most general
case the computation in these algorithms has been arranged in such a way that

1538 SURESH K. LODHA AND RON GOLDMAN

the original coefficients lie on a lateral face of the tetrahedron and the computation
proceeds downwards. (ii) Second, this terminology contrasts most appropriately
with the up recurrence algorithms described in Section 3.

4.1. Conceptual Overview. In order to describe the underlying unity of this
class of evaluation algorithms, we need to discuss certain change of basis algorithms
between L-bases. In contrast to the parallel up recurrence evaluation algorithms
for L-bases discussed in Section 3.1, the description and proof of which are fairly
easy, the change of basis algorithms for L-bases are deeper and have been discovered
only recently [26]. These change of basis algorithms were originally derived using
an elegant theory combining blossoming, homogenization and duality [39, 40, 43,
7, 26, 27]. To keep this paper self-contained, here we provide a new, more direct
proof.

In the following discussion, we shall assume that we are given the coefficients
R.> of a polynomial L of degree n with respect to the L-basis {l,'} defined by the
knot-net L = {{Li1},{L2j},{L3j}}, j = 1, n ,. We would like to compute the
coefficients U.> of this polynomial L with respect to another L-basis {m } defined
by another knot-net M = {{M1}, {M22 }, {M3j},j = 1, n.

Below we shall use the term lineal polynomial to mean any polynomial of degree
n that is a product of n linear factors. Observe that every element of an L-basis is
a lineal polynomial.

There are two crucial elements in deriving these change of basis algorithms be-
tween L-bases: (i) an up recurrence diagram for L-bases, that represents the basis
functions of one L-basis in terms of the basis functions of another closely related
L-basis, and (ii) a technique to convert this up recurrence diagram into a down
recurrence diagram that represents the coefficients of a polynomial with respect
to one L-basis in terms of the coefficients of the same polynomial with respect to
another closely related L-basis.

In the following discussion, we shall also employ the "intermediate" L-bases {pn }
and {q } defined respectively by the knot-nets {{L1i}, {L2j }, {M3j }= 1,. n
and {{Lij},{M2j},{M3j},j = 1, ... ,n}. In particular, we shall need to assume
that these "intermediate" knot-nets satisfy the linear independence condition; that
is, {L1,al ?i, L2,2+?, M3,j } and {L1al, 1, M2,112+1, M3,X3 } are linearly indepen-
dent polynomials for 0 < ceI < n- 1.

An up recurrence diagram for L-bases: We shall introduce a sequence of three
up recurrence diagrams. The first up recurrence diagram relates the L-bases {fln}
and {pn}. This up recurrence diagram is shown in Figure 14 for the cubic case.
The L-basis functions {pn } appear at the nodes on the base of the tetrahedron.
The L-basis functions {fln} emerge at the nodes on a lateral face of the tetrahedron.
The computation proceeds upwards and the value at any node is computed by
multiplying the value along each arrow which enters the node by the value of the
node from which the arrow emerges and adding the results as in the parallel up
recurrence algorithm described in Section 3.1. For every node of the tetrahedron,
there are three polynomials one level below from which the polynomial at the node
is computed. Observe that the first two sequences of the knot-net of the L-bases
{fln} and {pn} are the same. Therefore, the three lineal polynomials contributing to
any node have all common factors except precisely one. These three non-common
factors L1,,>1 ?, L2,112+1, and M3,,>3 are linearly independent. Therefore, any linear
polynomial can always be expressed as a linear combination of these three linear

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1539

L21 22 L23

V
21| 22L3

M3121 322 _11 2 1L22

1~~~3132 N N~ 1 3L3

MMM MM2 L L LL 1L 2L2 \

ag 31 32 L31 s 1z31L, 1L31 L,, L, 2 L31'V

31 32 33 31 32 11 31 L11, 12 L11 12 L,3

FIGURE 14. An up recurrence diagram for L-bases

polynomials. In particular, one can write any L3,, as a linear combination of these
three polynomials, that is,

L3,i= g1,cLj,c+1+j + g2,cL2,C2+i + 93,aM3,Q3+ -

The multipliers gk,a are then precisely the labels along the edges of the tetrahedron.
These labels are not shown in Figure 14 to avoid cluttering the diagram. However,
these labels are shown in Figure 15 for the quadratic case and are explained further
in greater detail in the next section.

The second up recurrence diagram is very similar to the first up recurrence
diagram. This diagram relates the L-bases {pn} and {qn}. Observe that the first
and the third sequence of knot-nets of these two L-bases are the same. Therefore,
by an argument similar to the one presented in the previous paragraph, it is possible
to build an up recurrence diagram for these two L-bases. Here the L-basis functions
{qn} appear at the nodes on the base, and the L-basis functions {pn} emerge at
the nodes on a lateral face of the tetrahedron.

Finally, in the third recurrence diagram, which is similar to the first two, the
L-basis functions {mn} appear at the nodes on the base of the tetrahedron and the
L-basis functions {qn} emerge at the nodes on a lateral face of the tetrahedron.
Taken together, these three tetrahedra represent a transformation T between two
arbitrary L-bases {1a} and {mn}.

Conversion to down recurrence diagram: Now suppose L is a polynomial of
degree n. Then L can be represented in terms of the L-bases {jnj}, {pn} {jqn}
and {mn}. More precisely, let L = EZck-=n Royln = ZFc-l=n Sc>pn = Z1j=n Taq =

ZIa=n ~U.Mn. Given R., we are going to use three down recurrence algorithms to
compute Sc*, Tt, and Uc, respectively.

1540 SURESH K. LODHA AND RON GOLDMAN

020

A

Ig24
92,01

011

3,010 1,000 10

2,001 "O- X >%\

A 3,0010 01001 00 0 3,100 1

000 100 200

* Given Coefficients

o Empty or zero nodes

FIGURE 15. Labeling of the tetrahedron

To this purpose, observe that the first up recurrence diagram represents the
matrix T, that computes {1a} from {pn}, that is,

[1a] =T -[Pn]

where [1a] and [pa] are column vectors, T is a square matrix and . represents matrix
multiplication. Suppose [Rc,] and [So,] are row vectors representing the coefficients
{Ro} and {So} respectively. Then

[So']. [pn] = [Roj . [lo] = [Roj T Opc].

Since pa is a basis, we have [So,] = [Re] . T or equivalently taking the transpose,
[SOJ]t = Tt. [Rft]t. In other words, the transformation from the coefficients RC to
the coefficients Sc is the transpose of the transformation T between the opposite
bases {pn} and {1a}.

We now establish that the transformation Tt can be achieved by taking the up
recurrence diagram that represents the matrix transformation T, keeping the same
labels and reversing the arrows. To begin, observe that Tap is the sum over all
the paths of the product of the labels along the paths from the node ca at the base
of the tetrahedron to the node 1 along the lateral face of the tetrahedron. If T'
represents the matrix for the same diagram with the arrows reversed, then T'3 is
the sum over all the paths of the product of the labels along the paths from the
node 3 on the lateral face of the tetrahedron to the node ca on the base of the
tetrahedron. In other words, T3a is the sum over all the paths of the product of
the labels along the paths from the node ca on the base of the tetrahedron to the
node 1 on the lateral face of the tetrahedron. However, since the labels along the
path remain the same and the multiplication is commutative, the direction of the
path is immaterial. Therefore, TI = Top; that is, T= Tt.

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1541

In summary, the following steps of the first down recurrence algorithm allow us
to compute Sc, from Rtc,:

1. reverse the arrows of the first up recurrence diagram,
2. keep the same labels along the edges,
3. place the coefficients Rftc on the nodes of a lateral face of the tetrahedron,
4. start the computation at the apex of the tetrahedron and proceed downwards,
5. compute the value at an empty node by multiplying the label along each arrow

that enters the node by the value of the node from which the arrow emerges
and add the results; compute the value at a non-empty node by applying the
same procedure and simply add the value already at that node,

6. collect the coefficients Sc, at the base of the tetrahedron.

The second and the third down recurrence diagram allows us to compute Tc,
from Sc, and Uc, from Tc, by reversing respectively the second and the third up
recurrence diagrams. Thus the three down recurrence diagrams taken together
represent a change of basis algorithm between two arbitrary L-bases.

This general change of basis algorithm is 0(n3) since each tetrahedron has 0(n3)

nodes. We record the following differences between the up recurrence evaluation
algorithms described in Section 3 and the change of basis algorithms described
here which will be used shortly to derive several special down recurrence evaluation
algorithms: (i) The up recurrence evaluation algorithm uses only one tetrahedron.
In contrast, the change of basis algorithms use, in general, three tetrahedra. In
particular, the Lagrange evaluation algorithm described in Section 4.3, the nested
multiplication evaluation algorithm described in Section 4.4, the divided difference
algorithm and the forward difference evaluation algorithms described in Section
4.5 use 3, 2, 2 and 2 tetrahedra respectively. In some cases, as in the nested
multiplication evaluation algorithm, the divided difference evaluation algorithm and
the forward difference evaluation algorithms, these tetrahedra get simplified. (ii) In
the up recurrence evaluation algorithms, all the original coefficients are at the base,
the computation proceeds upwards and the final value emerges at the apex of the
tetrahedron. In the change of basis algorithms and the down recurrence evaluation
algorithms to be discussed shortly, the original coefficients are placed on a lateral
face of the tetrahedron and the computation proceeds downward. Observe that in
this case even if the tetrahedron were to be rotated so that the original coefficients
were placed at the base of the tetrahedron, the computation will proceed upwards as
well as "sideways" since there will be "side" arrows in the base of the tetrahedron.
There are no such "side" arrows in the up recurrence evaluation algorithms; that
is, all the arrows in the up recurrence evaluation algorithms point upward.

4.2. Change of Basis Algorithms. We now describe this change of basis algo-
rithms between L-bases in greater detail. Although these change of basis algorithms
between L-bases are easy to implement, it is somewhat tedious to describe the la-
beling in full generality and complete detail. Therefore, we will begin with the
description of a change of basis algorithm between two quadratic L-bases. We will
then describe this change of basis algorithm between L-bases of arbitrary degree.

To describe the change of basis algorithm, we construct three tetrahedra. We first
explain the labeling scheme for these tetrahedra. For each tetrahedron, (3i)(4-i) 2
nodes are placed at the i-th level of the tetrahedron for i = 0,1, 2 and the nodes
along one of the lateral faces are indexed by ca for oja = 2. An arrow is placed

1542 SURESH K. LODHA AND RON GOLDMAN

R 020 S02 T0 2

Oil Oil 01~~~~~~~01

1 0 1 0 ~~~~~~~~~~~~~~~~~~~~~~~~~01 0 RT S T
Gi 0

A A .00AA *00 *'

R S T

R200 S200 020

FIGURE 16. Change of basis from Bernstein-Bezier L-basis to La-
grange L-basis

pointing downward from a node a at i-th level to the three nodes a + el - e3,
a + e2 - e3 and a - e3 at (i - 1)-st level directly below it. This labeling scheme for
the nodes is shown in Figure 15. Values, referred to as labels, are placed along the
arrows. The labels are indexed as gk, for k = 1, 2,3 and al I = 0, 1, 2 for an arrow
from a node (al,a2,2 - Ja1) at the alI-th level to the three nodes below it. This
labeling scheme for the labels and the arrows is also shown in Figure 15.

For the first tetrahedron the known coefficients Rn, with Jic = 2 are placed at
the nodes along one of the lateral faces of the tetrahedron as depicted in the first
diagram of Figure 16. The labels gk,c. are computed as follows: For Jla = 0,1, let
i = 2 - lal; then

L3i= gl,aLl,al,+1 + 92,cL2,o2,+l + 93,aM3,a3+1

Thus finding 9k,c, amounts to solving a 3 x 3 system of linear equations.
The computation is now carried out as follows. At the start all the nodes at all

levels of the tetrahedron are empty or zero other than the nodes a with Jal = 2,
where the coefficients Ro, are placed. The empty or zero nodes are shown as hatched
circles in Figures 15 and 16. The computation starts at the apex of the tetrahedron
and proceeds downwards. A value at an empty node is computed by multiplying the
label along each arrow that enters the node by the value of the node from which the
arrow emerges and adding the results. A value at a non-empty node is computed
by applying the same procedure and simply adding the value already at that node.
After the computation is complete, the new coefficients Sc,+(21cCI)e3 emerge at the
nodes a on the base triangle. These new coefficients now express the polynomial L
with respect to the L-basis defined by the knot-net {{Llj}, {L2j}, {M3j},j = 1, 2}.

We now repeat the above procedure with a second tetrahedron, where the coef-
ficients So, are placed at the nodes a with Jac = 2 as shown in the middle diagram
of Figure 16. The labels on the tetrahedron are permuted from (i, j, k) to (i, k, j)
because now we wish to retain the polynomial M3j and replace the polynomials L23
by M2j. The labels 9k,, are now computed as follows: For ia = 0,1, let i = 2- lai;
then

L2i= g g,cLj,a1+1 + 92,aM2,Cf2 +1+ 9 +3, cM3,03 + 1

These labels are also shown in the middle diagram of Figure 16. After the compu-
tation is complete, the new coefficients Tc, emerge at the nodes on the base triangle.
These coefficients now express the polynomial L with respect to the L-basis defined
by the knot-net {{Lij}, {M2J }, {M}3j}, j = 1, 2}.

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1543

Finally we repeat the above procedure with a third tetrahedron, where the co-
efficients Tc, are placed at the nodes ca with Jal = 2 as shown in the rightmost
diagram of Figure 16. The labels on this tetrahedron are permuted from (i, j, k) to
(j, k, i) because now we wish to retain the polynomials M2j and M3j and replace the
polynomials Lij by M1j. The labels 9k,c, are computed as follows: For jal = 0,1,
let i = 2 - ca; then

Li = g9,aM1,aj+1 + 92,aM2,a2?+ + 93,a M3,a3?+1

After the computation is complete, the new coefficients Uc, emerge at the nodes on
the base triangle. These new coefficients are the desired coefficients that represent
the polynomial in the new L-basis.

A general change of basis algorithm from any L-basis to any other L-basis is
obtained by following essentially the same procedure. The general change of basis
algorithm is constructed in the following manner:

1. Build three tetrahedra. For each tetrahedron, (n+1-i) (n+2-i) nodes are placed 2

at the i-th level of the tetrahedron for i = 0. , n. The labels 9ko along the
edges of the first tetrahedron are computed for alj = 0,. , n - 1, from

L3i = gl,a Lal +, 1 + 92,, L2,C12+1 + g3,cM3,13?, i = n j- al.

The labels for the second and the third tetrahedron are computed in a similar
fashion. We assume that the intermediate knot-nets {{Llj}, {L2j}, {M3j},
j = 1, ,n} are linearly independent.

2. Point the arrows on the tetrahedron downwards and place the original coeffi-
cients Rc along the lateral face of the tetrahedron. Carry out the computation
and collect the new coefficients Sc along the base of the tetrahedron.

3. Repeat steps 1 and 2 two more times with the second and third tetrahedra
using the output of the previous step as the input into the next step. After 3
steps, the coefficients at the base of the tetrahedron are the desired coefficients
Ua .

4.3. Lagrange Evaluation Algorithm. A Lagrange evaluation algorithm is ob-
tained by carrying out the change of basis algorithm from a given L-basis to the
Lagrange L-basis defined by the geometric mesh or the principal lattice configu-
ration described in Section 2.3. The coefficients obtained are the values of the
given polynomial at 0(n2) points vc, up to constant multiples. These coefficients
must be multiplied by ln (Vc,) to obtain the value of the given polynomial at these
points. Since the computational cost of the change of basis algorithm is 0(n3), the
computational cost of evaluating the polynomial at 0(n2) points is 0(n3), that is,
an amortized cost of 0(n) per point. This algorithm can be used repeatedly to
evaluate any bivariate L-basis on a regular rectangular lattice with an amortized
cost of 0(n) computations per point.

We illustrate this Lagrange evaluation algorithm by presenting an example. Sup-
pose we are given the coefficients Rc, of a quadratic polynomial L with respect to
the Bernstein-Bezier L-basis {ln} defined by a knot-net 2 = {{L }, {L2j}, {L3j},
j = 1, 2}, where

L31 = x; L12 = X;

L21 = Y; L22 = Y;

L31 = I1- x-y; L32 = I1- x- Y

1544 SURESH K. LODHA AND RON GOLDMAN

The corresponding Bernstein-Bezier L-basis is then given by 12c0c = X2, 1020 =y2

102 =(-X _ y)2, 1l210 = Xy, 1201 = x(l-x-y), and 1211 = y(1-x-y). If the
coefficients R' of the quadratic polynomial L are given with respect to the quadratic
Bernstein-Bezier basis x2, y2, (1- x _ y)2, 2xy, 2x(1 - x - y), and 2y(- x -y),
we first compute the coefficients R. with respect to the Bernstein-Bezier L-basis
by Rf = n!R' where n = 2 in this case.

We would like to compute the coefficients Uc, of this quadratic polynomial L
with respect to the Lagrange L-basis {mn} defined by the knot-net M = {{M1, },
{M2j}, {M3-}, j = 1, 2}, where

MI, = x; M12 = X- 2

M21 = Y; M22 = Y- 2;

A31 = 1-x-y; M32 = 2-x-y.

The corresponding Lagrange L-basis is then given by m200 = x(x -) m20 =

y(y - 2), mo02 = (1 - x - y)(1 - x - y), m210 = Xy, M201= x(I - x - y), and
m 2 = y(l - x - y).

For this example, the labels for the first tetrahedron are: 93,001 = 2, and 1,0ool =

92,001 = 93,010 = 93,100 = 93,000 = 1. The rest of the labels are zero. These labels
are shown in the first diagram of Figure 16. By carrying out the computation
downwards in the first tetrahedron, one obtains the following coefficients: S200 =

R200, Silo = R0lo, S020 = Ro2o, S101 = RoO2 + Rio,, Sol1 = Roo2 + RolI, S002 =
2Roo2. These new coefficients now express the polynomial L with respect to the
L-basis defined by the knot-net {{Lij}, {L23}, {M3}, j = 1, 2}.

For our example, the labels in the second tetrahedron turn out to be the same
as in the first tetrahedron and are shown in the middle diagram of Figure 16.
After carrying out the computation in the second tetrahedron, the coefficients are
as follows: T200 = S200, T110 = S020 + S11o, T020 = 2S020, T101 = S101, Toll =

S020 + SO11, T002 = S002. These coefficients now express the polynomial L with
respect to the L-basis defined by the knot-net {{L, 1 }, {M2j }, {M33 }, j = 1, 2}.

Again in our example, the labels in the third tetrahedron are the same as in the
first tetrahedron and are shown in the rightmost diagram of Figure 16. After the
computation in the third tetrahedron, the new coefficients are as follows: U200 =

2T200, U110 = T200+T110, U020 = T020, U101 = T200+T101, U011 = T011, U002 = T002

These coefficients express the polynomial L with respect to the L-basis defined by
the knot-net M = {{Mlj}, {M2j}, {M3j}, j = 1, 2}. The change of basis algorithm
is now complete. In terms of the original coefficients Rf, the final coefficients Uc,
are: U200 = 2R200, Ulio = R200 +Ro20+ R,,o, U020 = 2Ro20, Ulo1 = R200+ RoO2 +

Rio1, U011 = R020 + RoO2 + Rol,, U002 = 2RoO2.
Since the Lagrange basis is given by {mn(v)}, while the Lagrange L-basis is

mnI these bases differ by constant multiples. The coefficients Up with respect to
the Lagrange basis are computed by U. = Uormn(v,,). In the current case, since
V200= (1,0), v020 = (0, 1), v002 = (0,0), v110 = (v101 = (,0), v011 =

(0,), we find m200(v200) = 1, m220(vO20) = , m2(v0o2) = , ml210(Vlo) =1

ml01(vioi) = - m 11(voii) = 1 The coefficients U1 are the values of the quadratic
polynomial L at the points vc,; that is, L(vc,) = Uc. This completes the evaluation
algorithm.

The general Lagrange evaluation algorithm is obtained similarly by first con-
verting the coefficients in a given basis to an L-basis by multiplying if necessary

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1545

by appropriate constants, running the change of basis algorithm from the given
L-basis to the Lagrange L-basis, and finally multiplying the derived coefficients by
appropriate constants to obtain the value of the polynomial at the points defined
by the Lagrange L-basis.

4.4. Nested Multiplication Evaluation Algorithm. We now describe a nested
multiplication evaluation algorithm for an L-basis that is obtained by specializing
the change of basis algorithms between L-bases described in Section 4.2.

To evaluate a polynomial expressed in terms of an L-basis at a point u, let M
and N be two polynomials that vanish at u, that is, M(u) = N(u) = 0. We now
peform a change of basis algorithm from the L-basis defined by the given knot-net
12 to the L-basis defined by the knot-net {L1j, L2j, N; j = 1, n} and then from
this basis to the L-basis defined by the knot-net {L1j, M, N; j = 1, n ri}. Since all
the basis functions in the L-basis defined by this last knot-net have a factor of M or
N except the basis function 1nlo = L... Lln, the value of the given polynomial at
u can now be computed simply by multiplying the coefficient of ln0 with lnoo(u).

Notice that in this algorithm, one performs computations only for two tetrahedra
in contrast to computations for three tetrahedra in the general change of basis
algorithm. Also, for the first tetrahedron, the computation needs to be carried out
only along one of the faces of the tetrahedron, as shown in the left diagram of Figure
17, because only the values along one of the edges at the base of the tetrahedron are
needed as input for the next tetrahedron. Therefore, the computational complexity
for the first tetrahedron is only 0(n2). For the second tetrahedron, the computation
needs to be carried out only along one edge of the tetrahedron, as shown in the
right diagram of Figure 17, because only the value at one corner of the base of
the tetrahedron is needed to evaluate the given polynomial. The computational
complexity of this step is therefore only 0(n), giving an overall computational
complexity of 0(n2).

It is shown in [26] that for polynomials written in terms of the multinomial
basis, this algorithm specializes to a bivariate generalization of Horner's evaluation
algorithm for univariate polynomials expressed in the monomial (Taylor) basis, and
agrees with the algorithm for evaluation of multivariate polynomials proposed by
Schumaker and Volk [42].

Observe that this nested multiplication evaluation algorithm can be generalized
somewhat in order to further simplify the computation of the labels along the edges.
In this evaluation algorithm if we are given only one value of u, then we have a good
deal of flexibility in choosing M and N. In fact, even more generally, we can choose

R -> S S
020 020 002

R -> S 20S20 T20

FIGURER17. Nsted multiplcation evalution algoritm for L-Sase R S10

a. R > s T

200 200 S200 T200

FIGURE 17. Nested multiplication evaluation algorithm for L-bases

1546 SURESH K. LODHA AND RON GOLDMAN

any set of 2n lines {Mj, Ni, i = 1,... , n} passing through u and the same argument
goes through as long as the intermediate knot-nets are linearly independent.

In the case of a Bernstein-Bezier or multinomial L-basis, Lj, = L1, L2j = L2

and L3j = L3. Given vo = (xo0 yo), one possible choice is M = x - xo and
N = y - yo. But another possible choice, M = L3(vo)Ll - Lj(vo)L3 and N =

L2(vo)Ll - Ll(vo)L2, is more symmetric and has the advantage that the labels

gk,or are much simpler, as the following identities reveal:

L3=OxL2+ L3(v)L- 1 M
Li (vo) Li (vo)

L2=OxM+ L2(VO)L - 1 N
Li(vo) Li(vo)

We close this section by highlighting with an example the difference between the
nested multiplication evaluation algorithm described in Section 3.2 and the nested
multiplication algorithm introduced here. Consider a polynomial L(u) represented
in terms of the Lagrange L-basis defined by the knot-net

Li= = x -;

__1.
L21 = Y; L22 = Y - 2

2'
L31 =1-x-y; L32 = -x-y.

Suppose L(u) = Ejoj=n Ra n is to be evaluated at a point (xo, yo). Then a typical
nested multiplication evaluation algorithm described in Section 3 organizes the
computation as follows:

L(u) = R200 (x0 - -)xo + (Ri loxo + R020 (YO - 2))Y?
2 2

1
+(Rioixo + Roilyo + Roo2(. - xo - yO))(- Xo - Yo)

In contrast, the nested multiplication algorithm described in this section orga-
nizes the computation very differently. We first need to make choices. Let us define
N = x + y - - yo and M = y - yo. For the first tetrahedron, one obtains

the following required labels by solving the appropriate system of linear equations:

91,000 = 92,000 = a, 9i,1oo = 92,100 = 91,010 = 92,010 = b, where a = 2('-- Y -1, and

b = 1 -1, as shown on the left diagram of Figure 17. This tetrahedron
2(xo+yo)-1

yields the computation: S200 = (RO02a + Rioi)b + R200, S110 = (ROo2a + Rioi)b
+(RoO2a + Ro011)b +Riio, and S020 = (Roo2a + Roll)b + R020. For the second
tetrahedron, the necessary labels are: gi,ooo = c, and gi,loo = d, where c = 2yo-1

tetrahedron, ~~~~~~~~~~~~~~~~~2x0
and d = 2Yo These labels are shown on the right diagram of Figure 17. This

2x0-l1
tetrahedron yields the computation: T200 = (SO20c + Slo)d + S200. The value of
the original polynomial is then finally obtained by multiplying the value T200 by

o00 (xoyo), which in this case is x0(xo -

4.5. Divided and Forward Difference Algorithms. In this section, we estab-
lish that the divided difference algorithm and the forward difference algorithm for
evaluating bivariate polynomials can be obtained as a change of basis algorithm
from a Newton L-basis to another Newton L-basis.

EVALUATION ALGORITHMS FOR MULTIVARIATE POLYNOMIALS 1547

~~~~~~~~[xx4,hX3,] 6h3[x4sx3sx2 1] .J..~ t X hi 1 X,,,, 

1 1 3 1 1 
[X X2,X1] [X4, Xx21 1 . [X5,X4,X31 2 h [X3,X2,1 XI ] 0 "'4 xl -X2 \ 

[X ~ e~r] 5 lX2][X4,] X3 2 X2eX 1 ] 1? 

(XI] 
I 

[X21 I X 
32 [X1] [X2] 

FIGURE 18. Univariate divided and forward difference evaluation algorithms 

The divided difference algorithm is an algorithm for evaluating polynomials at 
several points, where successive computations take advantage of previous computa- 
tions. The forward difference evaluation algorithm is a divided difference algorithm 
for evaluating a polynomial at several equidistant points. 

To explain the divided difference algorithm in the multivariate setting, we first 
very briefly describe this algorithm in the univariate setting. Suppose a polynomial 
L(x) of degree n in one variable is to be evaluated at points x1,.. Xm, where m 
is much larger than the degree n of the polynomial. For the sake of illustration, 
assume that the given polynomial is of degree three. Moreover suppose that the 
polynomial is represented in the Newton basis 1, x - xi, (x - x1)(x - x2) and 
(X - X1)(X - X2)(X - X3). If that is not the case, then the polynomial can always be 
evaluated at n + 1 distinct points and then the coefficients of the polynomial L(x) 
with respect to the Newton basis can be computed using well-known techniques. 
The coefficients of the polynomial with respect to the Newton basis are the divided 
differences as shown below: 

L(x) = L[xl]+L[X2,Xl](X-xl)+L[x3,X2,Xl](X-xl)(x-X2) 

+L[x4,x3 ,X2,Xi](X - xi)(x - X2)(X - X3) 

Given these coefficients, one can compute the new coefficients of the same poly- 
nomial with respect to the new Newton basis 1, x - x2, (x - x2)(x - X3) and 
(X - X2) (X - X3) (X - X4) by applying the change of basis algorithm from one Newton 
basis to another Newton basis as shown in the left diagram of Figure 18. Observe 
that the coefficient of the polynomial with respect to the basis function 1 in the new 
Newton basis (designated as [x21 in Figure 18) is the value of the polynomial at X2. 

We now "roll" this algorithm along to compute the values of the given polynomial 
at successive points X3, X4 and so on. This algorithm has computational complexity 
0(n). 

The forward difference algorithm is akin to the divided difference algorithm 
but takes advantage of the fact that the points at which the polynomial is to be 
evaluated are equidistant. In this case, it is possible to get rid of all multiplica- 
tions so that each successive evaluation is based purely on addition. This goal is 
achieved by premultiplying the divided differences by appropriate constants, which 
depend upon the fixed distance between successive points, and then reducing the 
rest of the computation to pure addition as shown on the right diagram of Figure 
18, where h refers to the distance between successive equidistant points. Both the 
divided and forward difference algorithms are discussed in standard numerical anal- 
ysis textbooks [10]. We refer the readers to [32, 21] for a generalization of divided 
differences to the multivariate setting. 



1548 SURESH K. LODHA AND RON GOLDMAN 

R20 
R020 

aA; A - 

R 20 Roll R11 0 R 

R R R 
2- OC0, 20 

FIGURE 19. One step of bivariate divided difference evaluation algorithm 

We now describe how a bivariate version of the divided difference and forward 
difference algorithms can be obtained to evaluate a bivariate polynomial along a 
grid { (aj, bk) }. We proceed by specializing the change of basis algorithms between 
L-bases described in Section 4.2. As in the univariate case, there is a startup step 
and a marching step. Given any bivariate polynomial of degree n described in 
terms of an L-basis, we first apply the standard change of basis algorithm between 
L-bases to compute the representation of the polynomial in the Newton L-basis 
defined by the knot-net L = JJLljJ,{L2j}, = 1,..= ,n}, where Lij = 1, 
L2j = x - aj and L3j = y - bj. Let the coefficients of the given polynomial with 
respect to this basis be R,. We can now march in either the x or y-directions. To 
march in the x-direction, we perform a change of basis from the current Newton 
basis to the next Newton basis in the x-direction, which is defined by the knot-net 
X = JJNlj},{N2j},{N3j}Ij = 1,... ,u}, where Nlj = 1, N2j = x - aj+l and 
N3j = y - bj. Similarly to march in the y-direction, we perform a change of basis 
from the current Newton basis to the next Newton basis in the y-direction, which is 
defined by the knot-net M = {{Mlj}, {M2j}, {M3J},j = 1, J ,u}, where Mij = 1, 
M2j = x - aj and M3j = y - b,+,. The left diagram of Figure 19 illustrates the 
marching in the y-direction for the case n = 2. Since many arrows are 0 or 1, this 
left diagram simplifies to the right diagram of Figure 19. In general for degree n, 
there will be i + 1 arrows with label bn+,-i - bl, i = 0, , n - 1. Therefore this 
step of the algorithm requires 0(n2) computations. Similar simplifications hold for 
marching in the x-direction, which is illustrated for the case n = 2 in Figure 20. By 
marching in both the x and y-directions, we can compute the Newton coefficients 
of the original polynomial along an arbitrary grid { (aj, bk) }. The computational 
complexity of this bivariate divided difference algorithm is 0(n2) computations per 
point. 

The bivariate forward difference algorithm takes advantages of equidistant points 
by premultiplying the Newton coefficients by appropriate constants, just as in the 
univariate case, thus reducing all the computations to pure additions. To be more 
precise, the coefficients R. in the right diagram of Figure 19 are multiplied by 
a3!k'3 and the coefficients S. in the right diagram of Figure 20 are multiplied 
by a2!h 2, where h is the distance between the grid points in the x-direction and 
k is the distance between the grid points in the y-direction. After these premul- 
tiplications, the forward difference algorithm is obtained simply by changing all 
the labels on the arrows in these diagrams to 1. Thus every successive evaluation 



EVALUATION ALGORITHMS FOR MULTIVAR.IA'rE POLYNOMIALS 1549 

S002 S002 

so~~~~~ sso loio 

-0 S020%. S02 
1 

SSS 

S 20-0 silo S2.0 

FIGURE 20. Another step of bivariate divided difference evaluation algorithm 

can be achieved simply by addition, without any multiplication, thus reducing the 
cost to 0(n2) additions but only 0(1) multiplications per point. Also observe that 
both the divided difference algorithm and the forward difference algorithm require 
computation within only one tetrahedron rather than three. 

5. OTHER ALGORITHMS 

In this section, we briefly review a few other algorithms that are closely related 
to the evaluation algorithms discussed so far. 

5.1. Hybrid Algorithms. In addition to the algorithms for evaluating multivari- 
ate polynomials discussed so far, we are aware of some different algorithms for 
evaluating multivariate polynomials, most of which are spurred by considerations 
of stability in numerical computations [25, 46, 38]. First, Volk [45] has proposed a 
hybrid univariate nested multiplication and divided difference algorithm. Volk [46] 
has also proposed a slightly different evaluation algorithm based on the forward 
difference algorithm for evaluation of polynomials at several points. In order to im- 
prove the stability of the forward difference evaluation algorithm, Volk reduces the 
level of indirection in the computation by solving an upper triangular system [46]. A 
second method, discussed by Peters [38], is again motivated by concerns of stability 
and efficiency. This algorithm extracts univariate polynomials along isoparameter 
lines and then performs the evaluation algorithms for univariate polynomials using 
a forward difference or a nested multiplication algorithm. We have not addressed 
the very important considerations of stability in numerical computations, for which 
we refer the reader to [18, 16, 17], because rather than stability the focus of this 
work has been to provide a conceptual framework for the unification of a large 
variety of evaluation algorithms for multivariate polynomials. 

5.2. Derivative and Other Algorithms. Although we have focused only on 
algorithms for evaluating multivariate polynomials, these algorithms are closely 
related to and can easily be extended to procedures to compute derivatives of 
multivariate polynomials. This technique of unifying evaluation algorithms and de- 
rivative algorithms has been discussed for univariate polynomials by Goldman and 
Barry [23]. Here we briefly indicate how this extension from evaluation algorithms 
to derivative algorithms can be derived. The key observation is that a multinomial 
(Taylor) basis is defined by a point and two vectors and, therefore, change of basis 



1550 SURESH K. LODHA AND RON GOLDMAN 

algorithms to a multinomial basis defined by a point p and two vectors v1 and v2 
amounts to computing the directional derivatives of the polynomial at the point p 
in the directions v1 and v2. Therefore to compute the directional derivatives at a 
point p along the vectors v1 and v2 of a polynomial L(u) given with respect to an 
L-basis, one need only perform the change of basis algorithm from the given L-basis 
to the uniform L-basis defined by the following three lines: the line through p along 
the direction v1, line through p along the direction v2, and the line at infinity. 

Using principles of homogenization, blossoming, and duality [3, 2, 9, 29, 30, 4] 
univariate evaluation and differentiation algorithms have been unified with several 
other very well-known algorithms, formulas, and identities, including the Oslo al- 
gorithm, Boehm's knot-insertion and derivative algorithms, Marsden's identity, the 
binomial theorem, Ramshaw's blossoming algorithm, a two-term differentiation al- 
gorithm, and a two-term degree elevation formula. Although in this work we have 
focused solely on evaluation algorithms, it follows in conjunction with our earlier 
work [26, 27] that the principles of blossoming, duality, and homogenization can 
be extended to provide a similar unification in the multivariate setting between 
L-bases and B-bases. 

6. CONCLUSIONS AND FUTURE WORK 

We have presented a unified framework for evaluation algorithms for multivariate 
polynomials expressed in a wide variety of polynomial bases including the Bernstein- 
Bezier, multinomial, Lagrange, and Newton bases. Although in the past several 
different evaluation algorithms have been constructed by organizing the nested 
multiplications in different ways, the interpretation and unification of all these 
algorithms either as a way of reorganizing the computation in an up recurrence 
algorithm or as change of basis algorithms is new. 

Variations of the up recurrence algorithm include a parallel up recurrence algo- 
rithm with computational complexity 0(n3), a nested multiplication algorithm with 
computational complexity 0(n2 log n), a ladder recurrence algorithm with compu- 
tational complexity 0(n2), and a generalization of the Aitken-Neville algorithm 
for Lagrange L-bases with computational complexity 0(n3). Specializations of this 
class of algorithms include the de Casteljau algorithm for Bernstein-Bezier bases, 
the evaluation algorithms for multinomial and Newton bases proposed by Carnicer 
and Gasca, and the evaluation algorithms for multinomial bases proposed by de 
Boor and Ron. 

Variations of change of basis algorithms between L-bases yield a divided dif- 
ference algorithm with computational complexity 0(n2) per point, a forward dif- 
ference algorithm with 0(1) multiplications and 0(n2) additions per point, and 
a Lagrange evaluation algorithm with amortized computational complexity 0(n) 
per point for the evaluation of polynomials at several points. This class of algo- 
rithms also includes a nested multiplication algorithm with computational com- 
plexity 0 (n2) which along with the nested multiplication evaluation algorithm de- 
scribed in Section 3.2 can be considered as a generalization of Horner's algorithm 
for the evaluation of univariate polynomials. The evaluation algorithm for multi- 
nomial bases proposed by Schumaker and Volk [42] is a special case of the nested 
multiplication evaluation algorithm presented in Section 4.4. 



EVALUATION ALGORITHMS FOR, MUUJIVARIATE POLYNOMIALS 1551 

New algorithms derived and discussed in this work can best be appreciated in 
the case of Lagrange bases, where unlike multinomial or Newton bases consider- 
able simplifications do not occur. For multivariate polynomials expressed in La- 
grange L-bases, we have described several evaluation algorithms including a nested 
multiplication algorithm with computational complexity 0(n2logn) generated by 
removing redundant arrows from the up recurrence algorithm, a generalization of 
the Aitken-Neville algorithm with computational complexity 0(n3), a ladder recur- 
rence algorithm with computational complexity 0(n2), and a nested multiplication 
algorithm with computational complexity 0(n2). We have presented specific ex- 
amples to demonstrate that these algorithms are all distinct both conceptually and 
in practice. 

It has been very satisfying to discuss all the well-known algorithms for evaluat- 
ing multivariate polynomials in a single unified framework. It would be satisfying 
to integrate into our formulation evaluation algorithms for multivariate polynomi- 
als expressed in terms of other useful bases such as multivariate Hermite bases. 
A generalization of the Aitken-Neville recurrence for Hermite bases defined over 
geometric meshes is currently under investigation by Habib, Goldman and Lyche 
[24]. 

ACKNOWLEDGMENTS 

We wish to thank the anonymous referee whose comments helped us to improve 
the presentation of this work. 

REFERENCES 

1. A. G. Aitken, On interpolation by iteration of proportional parts without the use of differences, 
Proceedings of Edinburgh Mathematical Society (1932), 56-76. 

2. P. Barry and R. Goldman, Algorithms for progressive curves: Extending B-spline and blos- 
soming techniques to the monomial, power, and Newton dual bases, Knot Insertion and Dele- 
tion Algorithms for B-Spline Curves and Surfaces (R. Goldman and T. Lyche, eds.), SIAM, 
1993, pp. 11-64. CMP 93:11 

3. P. Barry, R. Goldman, and T. DeRose, B-splines, P6lya curves and duality, Journal of Ap- 
proximation Theory 65 (1991), no. 1, 3-21. MR 92f:41018 

4. W. Boehm, Inserting new knots into B-spline curves, Computer-Aided Design 12 (1980), 
199-201. 

5. J. Carnicer and M. Gasca, Evaluation of multivarmate polynomials and their derivatives, Math- 
ematics of Computation 54 (1990), no. 189, 231-243. MR 90h:12001 

6. , On the evaluation of multivariate Lagrange formulae, Proceedings of the Conference 
Mehrdimensionale Knostruktive Funktiontheorie, Oberwalch, Birkhauser Verlag, 1990, pp. 65- 
72. MR 91c:65014 

7. A. S. Cavaretta and C. A. Micchelli, Pyramid patches provide potential polynomial paradigms, 
Mathematical Methods in CAGD and Image Processing (T. Lyche and L. L. Schumaker, eds.), 
Academic Press, 1992, pp. 1-40. MR 93h:65023 

8. C. K. Chung and T. H. Yao, On lattices admitting unique Lagrange interpolations, Siam 
Journal on Numerical Analysis 14 (1977), 735-743. MR 56:3502 

9. E. Cohen, T. Lyche, and R. F. Riesenfeld, Discrete B-splines and subdivision techniques 
in computer-aided geometric design and computer graphics, Computer Graphics and Image 
Processing 14 (1980), 87-111. 

10. S. D. Conte and C. de Boor, Elementary numerical analysis, McGraw-Hill, New York, 1980, 
Third Edition. 

11. C. de Boor, A practical guide to splines, Springer Verlag, New York, 1978, Applied Mathe- 
matical Sciences, Volume 27. MR 80a:65027 



1552 SURESH K. LODHA AND RON GOLDAIMAN 

12. C. de Boor and Amos Ron, Computational aspects of polynomial interpolation in several 
variables, Mathematics of Computation (1992), 705-727. MR 92i:65022 

13. P. de Casteljau, Formes a p6les, Hermes, Paris, 1985. 
14. G. Farin, Triangular Bernstein-B6zier patches, Computer Aided Geometric Design 3 (1986), 

no. 2, 83-128. MR 87k:65014 
15. , Curves and surfaces for computer aided geometric design: A practical guide, Aca- 

demic Press Inc., New York, 1988. MR 90c:65014 
16. R. Farouki, On the stability of transformations between power and Bernstein form, Computer 

Aided Geometric Design (1991), no. 1, 29-36. MR 91m:65042 
17. R. Farouki and V. Rajan, On the numerical condition of polynomials in Bernstein form, 

Computer Aided Geometric Design 4 (1987), 191-216. MR 89a:65028 
18. , Algorithms for polynomials in Bernstein form, Computer Aided Geometric Design 5 

(1988), no. 1, 1-26. MR 89c:65033 
19. M. Gasca, Multivariate polynomial interpolation, Computation of Curves and Surfaces 

(W. Dahmen, M. Gasca, and C. A. Micchelli, eds.), Kluwer Academic Publishers, 1990, 
pp. 215-236. MR 91k:65028 

20. M. Gasca and E. Lebr6n, On Aitken-Neville formulae for multivariate interpolation, Nu- 
merical Approximation of Partial Differential Equations, Elsevier Science Publication, North 
Holland, 1987, pp. 133-140. MR 89b:41005 

21. M. Gasca and A. L6pez-Carmona, A general recurrence interpolation formula and its appli- 
cations to maultivariate interpolation, Journal of Approximation Theory (1982), 361-374. MR 
83f:41003 

22. M. Gasca and J. I. Maeztu, On Lagrange and Hermite interpolation in Rk, Numer. Math. 39 
(1989), 1-14. MR 83g:65012 

23. R. N. Goldman and P. J. Barry, Wonderful triangle: A simple, unified, algorithmic approach 
to change of basis procedures in computer aided geometric design, Mathematical Methods 
in CAGD II (T. Lyche and L. Schumaker, eds.), Academic Press, 1992, pp. 297-320. MR 
93e:65027 

24. A. Habib, R. Goldman, and T. Lyche, A recursive algorithm for Hermite interpolation over 
a triangular grid, Journal of Computational and Applied Mathematics 73 (1996), 95-118. 

25. S. L. Lien, M. Shantz, and V. Pratt, Adaptive forward differencing for rendering curves and 
surfaces, Computer Graphics 21 (1987), 111-118. 

26. S. K. Lodha and R. Goldman, Change of basis algorithms for surfaces in CAGD, Computer 
Aided Geometric Design 12 (1995), 801-824. CMP 96:04 

27. , Lattices and algorithms for bivariate Bernstein, Lagrange, Newton and other related 
polynomial bases based on duality between L-bases and B-bases, University of California, Santa 
Cruz, CA, UCSC-CRL-95-14, Submitted for publication, 1995. 

28. S. K. Lodha, R. Goldman, and J. Warren, A ladder recurrence algorithm for the evaluation 
of L-patches, Annals of Numerical Mathematics 3 (1996), 209-220. CMP 96:14 

29. T. Lyche and K. Morken, Making the Oslo algorithm more efficient, SIAM Journal of Nu- 
merical Analysis (1986), 663-675. MR 87m:65031 

30. M. J. Marsden, An identity for spline functions with applications to variation-diminishing 
spline approximation, Journal of Approximation Theory 3 (1970), 7-49. MR 40:7682 

31. A. Le Mehaut6, Approximation of derivatives in R". Applications: construction of surfaces 
in R2, Multivariate Approximation (S. P. Singh, J. H. W. Burry, and B. Watson, eds.), Reidel, 
1984, pp. 361-378. CMP 17:12 

32. G. Miihlbach, A recurrence formula for generalized divided differences and some applications, 
Journal of Approximation Theory 9 (1973), 165-172. MR 50:6106 

33. , Newton and Hermite interpolation mit Cebysev-systemen, Z. Angew. Math. Mech. 
50 (1974), 97-110. MR 50:8913 

34. , The general Neville-Aitken algorithm and some applications, Numerische Mathe- 
matik 31 (1978), 97-110. MR 80a:65025 

35. , On multivariate interpolation by generalized polynomials in subsets of grids, Com- 
puting 40 (1988). MR 90c:65020 

36. E. H. Neville, Iterative interpolation, Journal of Indiana Mathematical Society (1934), 87-120. 
37. G. Niirnberger and Th. Riessinger, Lagrange and Hermite interpolation by bivariate splines, 

Numerical Functional Analysis and Optimization 13 (1992), no. 1, 75-96. MR 93f:41048 
38. J. Peters, Evaluation of the multivariate bernstein-bezier form on a regular lattice, ACM 

Transactions on Mathematical Software 20 (1994). CMP 96:06 



EVALUATION ALGORITHMIS FOR, N/IULTIVARIATE POLYNOMIALS 1553 

39. L. Ramshaw, Blossoming: A connect-the-dots approach to splines, Digital Systems Research 
Center, Report 19, Palo Alto, California., 1987. 

40. , Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323-358. 
MR 91d:65026 

41. L. L. Schumaker, Spline functions: Basic theory, John Wiley, New York, 1981. MR 82j:41001 
42. L. L. Schumaker and WV. Volk, Efficient evaluation of multivariate polynomials, Computer 

Aided Geometric Design (1986), 1'49-154. 
43. H. P. Seidel, Symmetric recursive algorithms for surfaces: B-patches and the de Boor algo- 

rithm for polynomials over triangles, Constructive Approximation 7 (1991), 259-279. MR 
92c:41010 

44. H. C. Jr. Thacher and WV. E. Milne, Interpolation in several variables, J. SIAM (1960), 33-42. 
MR 22:8645 

45. WV. Volk, An efficient raster evaluation method for univariate polynomials, Computing 40 
(1988), 163-173. MR 89f:65029 

46. , Making the difference interpolation method for splines more stable, J. of Computing 
and Applied Mathematics 33 (1990), 53-59. MR 92a:65047 

47. J. Warren, Creating rational multi-sided Bernstein-Bdzier surfaces using base points, ACM 
Transactions on Graphics 11 (1992), no. 2, 127-139. 

48. , An efficient evaluation algorithm for polynomials in the P6lya basis, Computing 24 

(1995), 1-5. 

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF CALIFORNIA, SANTA CRUZ, CALIFORNIA 

95064 
E-mail address: lodhaDcse .ucsc .edu 

DEPARTMENT OF COMPUTER SCIENCE, RICE UNIVERSITY, HOUSTON, TEXAS 77251-1892 
E-mail address: rng~cs. rice. edu 


